spark(2.1.0) 操作hbase(1.0.2)

一、写操作

1、spark中引入外部jar包

  1)创建/usr/software/spark_jars目录,把hbase里的lib里的以下七个jar放入/usr/software/spark_jars里:

    guava-12.0.1.jar

    hbase-common-1.0.2.jar

    hbase-protocol-1.0.2.jar

    htrace-core-3.1.0-incubating.jar

    hbase-client-1.0.2.jar

    hbase-prefix-tree-1.0.2.jar

    hbase-server-1.0.2.jar

 

  2)修改spark-default.conf文件,加入以下两行: 

    spark.executor.extraClassPath=/usr/software/spark_jars/*
    spark.driver.extraClassPath=/usr/software/spark_jars/*

2、进入hbase事先创建好表

    create 'test','f1'

2、用spark-shell进行操作hbase。

3、代码部分:

import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.hadoop.hbase.client.{ConnectionFactory, Put}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

val conf = HBaseConfiguration.create()
var jobConf = new JobConf(conf)
jobConf.set("hbase.zookeeper.quorum", "localhost")
jobConf.set("zookeeper.znode.parent", "/hbase")
jobConf.set(TableOutputFormat.OUTPUT_TABLE, "test")
jobConf.setOutputFormat(classOf[TableOutputFormat])
val rdd = sc.makeRDD(Array(1)).flatMap(_ => 0 to 100000)
rdd.map(x => {
var put = new Put(Bytes.toBytes(x.toString))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("c1"), Bytes.toBytes(x.toString))
(new ImmutableBytesWritable, put)
}).saveAsHadoopDataset(jobConf)

 

二、读操作

1、用shell操作

import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}  

import org.apache.hadoop.hbase.client.HBaseAdmin  

import org.apache.hadoop.hbase.mapreduce.TableInputFormat  

import org.apache.spark._  

import org.apache.hadoop.hbase.client.HTable  

import org.apache.hadoop.hbase.client.Put  

import org.apache.hadoop.hbase.util.Bytes  

import org.apache.hadoop.hbase.io.ImmutableBytesWritable  

import org.apache.hadoop.hbase.mapreduce.TableOutputFormat  

import org.apache.hadoop.mapred.JobConf  

import org.apache.hadoop.io._ 

 

val tablename = "test"

val conf = HBaseConfiguration.create()  

conf.set("hbase.zookeeper.quorum","hadoop01")

conf.set("hbase.zookeeper.property.clientPort", "2181") 

conf.set(TableInputFormat.INPUT_TABLE, tablename)

val admin = new HBaseAdmin(conf)  

if (!admin.isTableAvailable(tablename)) {  

val tableDesc = new HTableDescriptor(TableName.valueOf(tablename))  

admin.createTable(tableDesc)  

}  

val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],  

classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],

classOf[org.apache.hadoop.hbase.client.Result]) 

val count = hBaseRDD.count()

hBaseRDD.foreach{case (_,result) =>{

val rowKey = Bytes.toString(result.getRow)

val value= Bytes.toString(result.getValue("f1".getBytes,"c1".getBytes))

println("rowKey:"+rowKey+" Value:"+value)

}}  

 

posted @ 2017-11-18 22:38  Runner_Jack  阅读(969)  评论(0编辑  收藏  举报